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Abstract: 

Insulin is a hormone which attaches to cell receptors, allowing glucose to leave the blood stream 
and provide energy to cells. Type I diabetes results when the pancreas does not produce enough 
insulin to assist the uptake of glucose into cells. In the case of type II diabetes, cell receptors 
have decreased insulin sensitivity and cannot use insulin to transport glucose into cells properly. 
Both conditions present the danger of causing unhealthy glucose levels in the blood stream and 
are treated with insulin injection therapy to trigger glucose uptake in the cells.  
 
A mathematical model of natural glucose and insulin control in the body allows for a deeper 
understanding of the malfunctions that cause diabetes, as well as a more quantified approach to 
regulating blood glucose levels with insulin injection therapy. Cobelli et al. presented a 
simulation model which describes the kinetics of glucose digestion and absorption that occur 
after a meal.i

First, this research seeks to extend the Cobelli model of glucose and insulin dynamics to include 
both long and short-acting insulin inputs currently used to treat diabetic patients. Secondly, the 
research will introduce a personalized approach to treatment by adapting the combined model 
parameters over time in response to observed patient feedback data. As a result, the updated 
Cobelli model  parameters can be fitted to the individual patient. The resulting model can be 
used in future research to predict the outcomes of different insulin dosages and determine the 
best treatment option to achieve desired glucose levels in diabetic patients. Consequently this 
research forms the foundation for a personalized prescription tool to improve diabetic patient 
care.  
 
Keywords: insulin, glucose, diabetes, injection, model 
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Understanding Insulin and Diabetes 

Human cells use insulin to extract glucose from the bloodstream, using the simple sugar for 
energy. The hormone insulin is analogous to a key that is needed to “unlock” cells by attaching 
to cell receptors, allowing glucose to enter. Malfunctions in the regulation of insulin and glucose 
in the body can give rise to pathological conditions including both type I and type II diabetes. 
Type I diabetes results when the pancreas does not produce enough insulin to assist the uptake of 
glucose into cells. Type II diabetes is a condition in which cell receptors have decreased insulin 
sensitivity and cannot use insulin to intake glucose properly. Both conditions result in abnormal 
glucose levels in the blood stream, potentially resulting in complications including heart disease, 
stroke, high blood pressure, blindness, kidney failure, and nervous symptom damage. 
  
Both type I and type II diabetes are currently treated with insulin injection therapy to trigger 
glucose uptake in the cells. The Juvenile Diabetes Research Foundation launched the Artificial 
Pancreas Project in 2006 to push for the development of an artificial pancreas.iv This implant 
would work in the place of a type 1 diabetic’s failing pancreas, regulating blood glucose levels in 
the blood by administering the appropriate dose of insulin. 

Project Goals 

This project will bridge the gap between current artificial pancreas research and clinical 
application to improve treatment methods for both type I and type II diabetic patients. While the 
development of an artificial pancreas is a desirable long-term goal, a physiologically accurate 
glucose control model has immediate potential as a prescription tool for physicians to use. This 
prescription tool will help physicians to better understand their specific patient’s condition and 
determine the best course of insulin therapy needed to achieve healthy blood glucose levels.  

Figure 1 outlines the research objectives in a flow chart format. First, the research will improve 
the clinical relevance of an existing model of glucose dynamics which currently only accounts 
for the influence of insulin that is naturally secreted from the pancreas. The improved model will 
include additional insulin inputs currently used in injection therapy. The second objective is to 
adapt the Cobelli model parameters to investigate a personalized approach to treatment, fine 
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tuning the model to best represent the patient’s condition.  These two research steps will prepare 
the combined Cobelli and Insulin models for future use in adaptive model predictive control, 
building the foundation for a personalized prescription tool for physicians to use. The Juvenile 
Diabetes Research Foundation states the “development of novel learning/patient specific 
artificial pancreas control algorithms in closed loop control systems” as one of its top priority 
areas for the fiscal year of 2013.vThis research will contribute to an individualized prescription 
tool that physicians can use to better treat diabetic patients, while furthering the development of a 
control algorithm that could be applied to a functioning artificial pancreas in the future. 

 

Figure 1: Research Objectives 

Research Timeline  
 
My first semester research goals were centered on developing a working understanding of the 
Cobelli model, solving the Cobelli differential equations using Simulink, finding an appropriate 
mathematical model of insulin injections to incorporate into the Cobelli model, and investigating 
the Cobelli  model parameter sensitivity to prepare for parameter adaption. 

During second semester, a virtual patient was created using the Cobellii model with a 
randomized set of model parameters. This generated patient data was used for analysis 
throughout the research, as patient data from Anne Arundel Medical Center was obtained in 
early April and could not be used in the project. Parameter sensitivity analysis results identified a 
subset of the Cobelli model parameters that would be most effective in adapting the published 
Cobelli diabetic patient parameters to fit the virtual patient data. Additionally, models of slow 
and fast acting insulin injections were added to the adaptive Cobelli model. This adaptive model 
will be useful in future research to create a personalized prescription tool to improve the 
treatment of diabetic patients. The remainder of this report will describe the pertinent 
background information and results of my work throughout the year.  

Cobelli Background and Modeling  

Cobelli et al. presented a nonlinear simulation model composed of glucose and insulin 
subsystems and four unit process models which describe the kinetics and physiological events of 
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glucose digestion and absorption in key organs after a meal. They used a "triple tracer meal 
protocol" that provided estimates of major glucose and insulin fluxes (i.e. flow rates) during the 
course of a meal.vi The model relates glucose and insulin fluxes to compartmental concentrations 
in order to characterize the flow through each subsystem, using 28 differential equations to 
represent glucose and insulin dynamics in a physiologically accurate manner. Cobelli’s model is 
an appealing foundation for my research because a computer simulator of type 1 diabetes was 
based on this model and approved by the FDA as a substitute to animal trials for preclinical drug 
testing. vii 
 
For the sake of brevity, only the differential equations characterizing the insulin subsystem will 
be described further. The two-compartment insulin subsystem, displayed in Figure 2, describes 
the response of the insulin masses in the liver (  – Equation 1) and plasma ( to 
insulin secreted by beta cells in the pancreas (S). Specifically, these masses vary as insulin is 
utilized in the periphery (muscle and tissue) cells to assist in glucose uptake or is lost within the 
liver. The two equations shown below describe the flow (change in mass over time) of insulin 
through each compartment. Note that the dot notation indicates the derivative with respect to 
time. The variables 1m , 2m , 3m , and 4m are rate parameters describing the exchange between the 
liver and plasma insulin compartments as well as the rate at which insulin is either lost within the 
liver or used in surrounding cells. 

 

Figure 2: Insulin Subsystem and Equations from Cobelli Model 

 

 

Before proceeding, I wanted to possess an in-depth understanding of Cobelli’s glucose and 
insulin model. To do so, I created three reference documents including a block diagram relating 
the Cobelli model subsystems (Enclosure 1), a similarly structured diagram outlining the 
necessary equations from Cobelli’s original paper (Enclosure 2), and a chart of all model 
parameters and their physiological meaning (Enclosure 3). MIDN 1/C Brandon Meek, a systems 
engineering honors student working on a related capstone project, then used these reference 
documents to build a Simulink model of the Cobelli equations. Simulink is a computer program 
available at USNA that uses a block diagram (graphical) environment to solve differential 
equations and simulate dynamic systems over time. Figure 3 shows the Simulink model 
structure. Each block in this image is a subsystem containing the relevant subsystem equations. 
The insulin subsystem is circled.  
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Figure 3: Cobelli Simulink Model 

The interior of the insulin subsystem is shown in Figure 4. The two circled integrator, , 
blocks indicate that two differential equations are solved within the subsystem.  

 

Figure 4: Simulink Insulin Subsystem 

The scope allows the user to plot the plasma insulin mass over time and compare the results to 
those published in Cobelli’s paper.viii The graph in Figure 5 represents the Simulink insulin data 
as seen through the MATLAB scope after a patient is given a meal. As expected, the insulin 
level increases to help transport the ingested glucose from the blood stream into cells to be used 
for energy. This graph matches the insulin data published by Cobelli, indicating that the Cobelli 
model can be accurately simulated and manipulated using Simulink code.  
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Figure 5: Simulink Insulin Data 

Once the Simulink Cobelli model was verified to match the published results, it was used to 
create a “virtual patient”  by randomizing the model parameters. Cobelli et al. published model 
parameters for both healthy and diabetic patients.ix  The percent change between these values 
was calculated, and the parameters were randomized within a range of plus or minus 10% of the 
diabetic patient parameter value. Using this interval, multiple unique patient parameter sets could 
be used to generate data using the Cobelli Simulink model. Figure 7 shows the simulation results 
for the one meal using the original Cobelli parameters, as well as three different patients with 
randomized parameter values.  
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Figure 5: Virtual Patient Data 
Objective 1: Improve Clinical Relevancy by Expanding the Cobelli Model 

Diabetes patients are currently treated with both rapid-acting and long-acting insulin injections to 
achieve effective glucose control throughout the course of a day. The characteristics of common 
insulin analog injections are displayed below.x 

 
Rapid Acting Onset Peak Duration 

Humalog or Lispro 15-30 min 30-90 min 3-5 hr 

Novolog or Aspart 10-20 min 45-50 min 3-5 hr 

Apidra or 
Glulisine  

20-30 min 30-90 min 1-2.5 hr 

 
Long Acting Onset Peak Duration 

Lantus 1-1.5 hr None (steady) 20-24 hr 

Levemir 1-2 hr 6-8 hr Up to 24 hr 

Table 1: Common Insulin Injection Profiles 
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The Cobelli model must be modified to include both rapid-acting and long-acting insulin inputs 
to the plasma insulin compartment.  This modification will make the Cobelli model more 
relevant to doctors considering the model as a potential prescriptive aid.  The altered insulin 
subsystem is shown in Figure 7. 

 
 

 

Figure 6: Insulin Subsystem with added injections 

The original research proposal suggested the use of first order transfer functionswith differing 
time constants and an appropriate time delay for rapid- and long-acting insulin injections, as 
shown in Equation 3 and 4.  

 

 

However, further literature study revealed significant prior work on the subject of insulin analog 
injection modeling. The literature trail showed that a single first order equation oversimplifies 
the injection and absorption of insulin under the skin, through the capillary membrane, and into 
the bloodstream. A review of four major papers resulted in the final representation chosen. My 
findings are summarized below. 

Similar to our proposal, Huang et al. presents a simple first order model to describe the dynamics 
of impusive insulin injections.xi However, this model does not have separate compartments for 
the tissue and blood stream with associated time delays. Next, a three compartment model 
presented by Shimoda et. al. was considered.xii This model includes a separate injection depot 
compartment, which is represented with a first order delay. However, the model only applies to 
rapid acting insulin, as a first order delay is not enough to simulate the slow dissolving process of 
long acting injections.  

The most helpful paper throughout this literary search was a review of multiple insulin injection 
models written by G. Nucci and C. Cobelli.xiii In this paper, Cobelli dismisses the Shimoda 
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model because it was conceived in the 1980’s, before modern insulin analogs were available. A 
more promising model presented by Trajanoski et. al. describes the breakdown of insulin analogs 
from an original hexameric state to a dimeric state that can be absorbed into the bloodstream. 
The model includes an imaginary “bound state” to represent the delayed dynamics of long acting 
insulin injections. Cobelli praises this model for its chemical accuracy, dependency on both time 
and injection depth, and inclusion of an inverse relationship between injection volume and 
absorption rate. At the end of the review paper, Cobelli concludes by suggesting a simplification 
of the Trajanoski model structure to reduce computational burden.  

Jiaxu Li and Yang Kuang answered with their simplified version of Trajanoski’s model.xiv The 
model equations vary with time (rather than both time and injection depth), include a 
biologically accurate Michaelis-Menten description of insulin degradation, and lessen the 
computational burden of the original model. This model appears to be the best fit to incorporate 
into Cobelli’s model of insulin and glucose dynamics: it describes the chemistry of insulin 
injection absorption, appropriately accounts for compartmental delays, and has been reviewed 
positively by Cobelli. The rapid (short) acting and long acting injection model equations shown 
below were modeled in Simulink to be incorporated into the Cobelli model insulin equation. In 
these equations,  represents the total plasma insulin mass, while  and  represent the 
individual insulin injection concentrations. xv  

Short-acting insulin: Lispro 

 

 

      

 

Long-acting insulin: Glargine 
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Equations 7 and 11 represent the plasma insulin concentration of fast and slow acting insulin 
which Li and Kuang proposed. When the fast and slow acting insulin models were originally 
added to the Cobelli plasma insulin equation (represented in Equation 2), the resulting equation 
was as follows: 

 

However,  there are two key differences between the Cobelli and Li/Kuang models that are 
important to note. First, the insulin equations are represented using different units, uU/ml in 
Li/Kuang and pmol/kg in Cobelli. Additionally, this difference in units reflects the fact that the 
insulin injection equations represent insulin concentrations in the bloodstream, while the Cobelli 
equations describe a mass of plasma insulin. To remedy these differences and accurately 
combine the Cobelli and insulin injection models, the combined insulin equation was altered to 
multiply each insulin injection term by the total plasma insulin volume in the Cobelli model (Vi). 
This correction, along with additional unit conversions within the Li/Kuang insulin model 
parameters, placed the combined equation terms consistently in pmol/kg to represent the 
combined plasma insulin mass.  

A few additional changes were made to the Li/Kuang insulin injection equations to form an 
appropriate total plasma insulin equation. Originally, the proposed equations for the fast and 
slow acting insulin injections (Equations 5 and 9) were dependent on the total plasma insulin 
concentration, both in the insulin addition term and the negative insulin degradation term. The 
equations were edited so that the addition of dimeric insulin is inversely proportional to the total 
insulin mass, , but the degradation of insulin is dependent on the concentration of the 
injection, . The initial condition of the slow and fast acting insulin concentration 
equations (Equations 7 and 11 –  and ) was originally set at 6 uU/ml to normalize the 
patient’s plasma glucose level to basal conditions. This was because patients were given insulin 
overnight to normalize their plasma glucose levels, isolating the effect of the insulin injections 
and providing data that would prove useful in modeling the injection dynamics.xvixvii When the 
insulin injection concentrations were added to the total insulin mass in Equation 10, the insulin 
initial conditions were set to zero. The insulin component of the Cobelli model will account for 
any plasma insulin produced by the body, so no baseline initial condition is needed.  

 

 

The combined model was coded in Simulink and used to administer both slow and fast acting 
insulin to a virtual patient over a 24-hour period. The patient received 40 units of slow acting 
insulin at time zero, along with his first meal. He then received 8 units of fast acting insulin 
along with his second meal 6 hours later. Here, 1 unit of insulin equals 6.94  pmol/l. Figure 
9 shows the resulting glucose levels of the patient, as compared to the same patient who received 
no insulin or only the slow insulin injection at time zero. When slow insulin is administered, it 
lowers the patient’s peak and resting glucose levels as shown by the red line graph. The fast 
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insulin, administered along with meal two, creates an additional decrease in the blood glucose 
level that could not be achieved with slow insulin alone. This is best seen by comparing the red 
(slow and fast insulin) and green (slow insulin only) lines in in the second spike of glucose 
concentration. In this case, the patient was given five times the amount of slow acting insulin as 
compared to fast insulin, so it is not surprising that the fast acting insulin does not have a large 
impact on the patient’s glucose levels.  

 

Figure 9: Combining Cobelli and Insulin Models 

Figure 10 shows the insulin concentration for the same patient, as slow insulin is administered at 
time 0 and fast insulin is administered six hours later. The injected insulin is necessary to help 
the ingested glucose leave the blood stream and enter the cells following a meal. Focusing on the 
valleys following each meal, the insulin injections prevent the patient’s insulin levels from 
dropping as low as they would without injected insulin. These increased insulin levels assist in 
glucose uptake, lowering plasma glucose levels between meals.  
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Figure 10: Showing Insulin Concentration changes 

This combined model seems to accurately represent the desired effect of injecting a patient with 
external insulin: lowering blood glucose levels, particularly between meals. These results will 
need to be compared to patient glucose readings over the course of insulin treatment to verify the 
accuracy of the combined model. 

 

Objective 2: Adapt the Cobelli Model Parameters 

Once the Cobelli model had been verified with Simulink and combined with an appropriate 
insulin injection model, my focus shifted to preparing to adapt the original Cobelli model 
parameters to best fit the condition of an individual patient.  The first step was to evaluate the 
sensitivity of the glucose and insulin responses of the Cobelli model to parameter changes. This 
analysis provided a subset of the most sensitive model parameters that would be most effective 
in parameter adaptation to create a personalized Cobelli model. The MATLAB code in Enclosure 
4 changes each of the 35 model parameters by incremental percentages of their original value, 
runs the Cobelli Simulink model, and obtains the resulting glucose data. Then, the code 
calculates the error between the altered and original response to compute the model’s sensitivity 
to the parameter change. The average sensitivity was determined for each parameter using 
equation 11.  

 

 

Slow 
insulin 
injected 

Fast insulin 
injected 
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Several different methods of parameter sensitivity testing were used to ensure the proper 
parameters were chosen for adaptation. The sensitivity was first calculated using error in 
resulting glucose data, followed by the insulin data error, as well as a sum squared error 
combining both glucose and insulin results. Four parameters (Fcns, gamma, Heb, and f) did not 
change between healthy and diabetic patients in Cobelli’s paper, so these parameters will not be 
adapted to fit patient data and have been removed from all data tables below. Table 2 shows the 
parameters which were most sensitive when both insulin and glucose error were considered. 

Parameter 
Name 

Parameter Description Average 
Sensitivity 

kp1 EGP at zero glucose and 
insulin 

10711.849 

Vg Distribution volume of 
glucose 

1538.5491 

kp4 Amplitude of portal 
insulin action on liver 

888.2471 

k1 Glucose rate parameter 
(b/n plasma and tissue) 

677.07393 

Vi Distribution volume of 
insulin 

474.51345 

m6 Rate parameter for 
Hepatic extraction 

382.68959 

m4 Insulin rate parameter 
(periphery degredation) 

284.53814 

 

Table 2: Parameter Sensitivity Results – Combining Insulin and Glucose Error 

Since the parameter sensitivity is determined using glucose and insulin data, it is logical for the 
most sensitive parameters to be involved with endogenous glucose production from the liver 
(kp1 and kp4), parameters within the glucose subsystem (Vg, k1),  or within the insulin 
subsystem (Vi, m4, and m6).  

After this sensitivity testing was conducted, additional sensitivity testing was designed to not 
only increase the parameter values and determine resulting sensitivity, but to decrease the 
parameter values as well. This sensitivity testing yielded the results shown in Table 3. These 
results have overlapping sensitive parameters with those in Table 2, except for the three 
parameters highlighted in blue.  

Parameter 
Name 

Parameter Description Average 
Sensitivity 

kp1 
EGP at zero glucose and 

insulin 5777.668044 

m5 
Rate parameter for 
Hepatic extraction 1722.260222 



14 
 

kabs 
Rate constant of intestinal 

absorption 977.5885681 
kgri Rate of grinding 795.9737116 

Vg 
Distribution volume of 

glucose 533.1015597 

kp4 
Amplitude of portal 

insulin action on liver 474.7515014 

k1 
Glucose rate parameter 
(b/n plasma and tissue) 416.7587145 

m6 
Rate parameter for 
Hepatic extraction 344.0057034 

Table 3: Parameter Sensitivity Results - Using + and - parameter changes 

After this first two rounds of parameter sensitivity testing, it was decided that parameter 
adaptation would be evaluated first by adapting the top five parameters from the combined 
insulin and glucose sensitivity testing (kp1, Vg, kp4, k1, VI). Then, parameter adaptation would 
be evaluated when ten parameters are adapted, including the top seven combined sensitivity 
results as well as the three additional parameters highlighted in table 3.  

The parameter adaptation code (Enclosure 5) is a Matlab script which uses an optimization 
function to choose the best set of parameters to match patient glucose data. The script runs 
through multiple iterations, trying different parameter sets within a determined set of upper and 
lower bounds, solving the Cobelli model equations, and computing the sum squared error (or 
cost) between the simulated data and the provided patient data. In this case, the patient data was 
generated using a Simulink model with randomized parameters, as described before with the best 
fit. Once the program can no longer lower the cost, it returns the best fit set of parameters. The 
optimization function also returns the cost  between the patient glucose data and the data 
simulated using the chosen parameters. Here, the goal is to reduce the cost without adapting all 
35 Cobelli model parameters, thus reducing computational burden.  

Figure 11 shows the results of parameter adaptation in which all 35 Cobelli model parameters 
were adapted to fit the randomized patient data. In this case, the glucose data simulated with the 
adapted parameters (black line) and the patient data (blue line) completely overlap. This and the 
extremely low calculated cost prove that adaptation was successful. However, the parameter 
adaptation code ran for over 10 minutes before determining the optimal set of parameters. In 
future research, parameter adaptation will be a portion of a larger input prediction routine, and it 
is unreasonable to allow this much time for adaptation. These results confirmed the need to 
choose a smaller set of parameters to more efficiently adapt the Cobelli model to fit patient data. 
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Figure 11: Adapting all 35 parameters 

Next, the parameter adaptation code was written to adapt the top five sensitive parameters (as 
determined from the combined insulin and glucose data) and hold all other parameters constant 
at the Cobelli values. Doing so greatly increased the cost (from 0.217 to 961). To put the 
resulting cost in perspective, I compared the parameter adaptation cost (961) to the cost (or sum 
squared error) between the patient data and the Cobelli model glucose response using the 
published diabetic patient parameters. The adapted cost is still less than 8% of the cost calculated 
using the data generated from the original Cobelli parameters; These results are shown in Figure 
12 below. 
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Figure 12: Adapting top 5 parameters (glucose and insulin sensitivity) 
The next round of parameter fitting changed ten parameters to fit the randomized patient data. As 
shown in Figure 13, the cost (161) is significantly reduced by allowing just five more parameters 
to adapt and fit the patient data. This new cost is 16.7% of the cost resulting from adapting only 
the top five parameters. The code ran in a reasonable amount of time, suggesting that this is a 
reasonable number of parameters to adapt in order to personalize the Cobelli model.  
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Figure 13: Adapting top 10 Parameters 

After these first two rounds of parameter adaption, we revisited the parameter sensitivity testing 
with a different approach to see if the adaptation results could be improved. This time, instead of 
altering each parameter by a percentage of its original value, we based the parameter changes on 
the percent change between the healthy and diabetic value for each parameter. This approach 
was designed to emulate the method we used to generate the randomized patient data, by altering 
the original Cobelli diabetic value by a random percentage of the percent change between 
healthy and diabetic parameter values. Each parameter was changed by positive and negative 5% 
and 10% of the percent change between healthy and diabetic parameter values. The sensitivity 
was then calculated using the resulting glucose data, and the top five and ten parameters were 
chosen for additional rounds of adaptation testing.  

Table 4 summarizes the parameter adaptation results for all 5 scenarios: adapting all 35 
parameters, the top 5 parameters from the combined glucose and insulin data, top 10 parameters 
(including positive and negative parameter changes), the top 5 “new” parameters chosen by 
considering the percent change in parameter values, as well as the top 10 parameters from the 
same round of parameter sensitivity testing. The first two columns compare the glucose cost 
calculated using the adapted parameter values to the cost generated using the original diabetic 
Cobelli parameter values. The new method of parameter sensitivity testing picked out parameters 
which caused an increased cost as compared to the original method. The original top ten 
parameters are therefore the most effective in adapting to personalize the Cobelli model to fit 
patient glucose data.  
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The third and fourth columns of Table 4 record the sum of the percent error between the adapted 
and original patient parameters, as well as the percent error between the Cobelli parameters and 
actual patient parameters. This is a potentially helpful analysis tool because it shows how close 
the parameters were to matching the randomized patient values. All five cases have very low 
parameter error percentages, making this a difficult tool to use to distinguish between adaptation 
methods. Additionally, the parameter percent error did not always decrease when the parameters 
were allowed to adapt. The most important metric to use when analyzing parameter adaptation 
effectiveness is the glucose cost, because patient glucose data will be used to personalize the 
Cobelli model and determine insulin injections in any prescription tool. The individual adapted 
parameters may not come closer to the patient parameter values, but this is of little importance as 
long as the simulated glucose data fits the provided patient data with as low of cost as possible.  

 

Table 4: Summarizing Adaptation Results 

Conclusion and Future Directions 

The two main objectives of this research project were accomplished over the course of the year: 
the Cobelli model was combined with physiologically accurate models of slow and fast acting 
insulin injections. The parameters of the Cobelli model equations were adapted to personalize the 
model, fitting virtual patient glucose readings. With access to patient data from Anne Arundel 
Medical Center, this combined model can be fit to real patient glucose data to assess parameter 
adaptation success and verify the model’s validity for use as the foundation of a personalized 
prescription tool. Pending patient data confirmation, this combined adaptive model is prepared 
for the application of model predictive control to determine appropriate insulin injection 
treatment methods for diabetic patients.  

The topic of Diabetes has become a multigenerational Trident Research focus within the Systems 
Engineering Department. MIDN Bryan Weisberg from the class of 2013 investigated the 
addition of glucagon dynamics to the Cobelli model. I built upon his knowledge of the Cobelli 
model to incorporate insulin input dynamics, create a virtual patient, and apply parameter 
adaptation to fit randomized patient data. Next year, 1/C Alvin Abes will apply predictive control 
to this adaptive combined model, working to build a personalized prescription tool which can 
assist physicians in treating diabetic patients. These continued research efforts under the 
instruction of Professor Richard O’Brien will further the development of a control algorithm 
which will improve our understanding of diabetes, improve patient treatment methods with the 
introduction of mathematical prescription tools, and contribute to the development of an artificial 
pancreas in the future.  

Adapted glucose  
cost 

Diabetic glucose 
Cost

% error adapted 
parameter 

%error 
diabetic 
parameter

1 meal, all 35 parameters 0.217 12100 2.07939675 1.983223512
1 meal, 5 parameters 961 12100 1.807557703 1.828632793

1 meal, 10 parameters 119 12100 1.426699217 2.491692

1 meal, 5 new parameters 1630 12100 0.686665424 8.012487486
1 meal, 10 new parameters 1046.7 12100 1.520362334 0.627409478
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1

%Enclosure 4 - Randomized Virutal Patient Data
%Creates Random patient data for three patients

% %show original cobelli patient data
run Diab_Parameter_Vector
run Parameter_initialization; %picks off values and creates variables
sim Cobelli_correct %runs Cobelli Simulink model
 figure (1)
plot(time,gluc)
clear time gluc

%change each parameter by a random percentage

%set acceptable limits for the different parameters (use 10% of difference
%between healthy and diabetic in cobelli paper) %corrected to be centered
%around diabetic value
limit = [0.026174497
0.054761905
0.011267606
0.028571429
0.026022305
0.025
0.049868074
0.02808321
0.027881041
0.042205323
0.020288248
0
0.02
0.005263158
0.147826087
0.02
0
0.116666667
0.020588235
0.002608696
0.088888889
0.012621359
0.2
0.08
0.021374046
0.01969697
0
0.046236559
0.0265625
0.051611935
0.060595238
0.132323232
0.284615385
0.12
0
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0
0
];

for p = 1:3
    change = zeros(37,1);
for i = 1:37

    change(i) = (2*(limit(i)).*rand(1,1)-limit(i)); %creates a vector of 35 random changes between -limit and +limit

end

New_Param = zeros(length(Parameters),1);

for i = 1:37
        New_Param(i) = (1+change(i))*Parameters(i); %modify all parameters, using randomized changes
 end

Parameters = New_Param; %reset parameters vector to randomized parameters

run Parameter_initialization; %initialize parameters again with new values
sim Cobelli_correct

figure (p+1)
plot(time, gluc);
xlabel('Time (min)');
ylabel('Plasma Glucose Concentration (mg/dl)');

if p==1
    savefile = 'Patient1_3meals_correct.mat';
    title('Plasma Glucose: Patient 1 Parameters');
end
if p==2
    savefile = 'Patient2_3meals_correct.mat';
       title('Plasma Glucose: Patient 2 Parameters');
end
if p==3
    savefile = 'Patient3_3meals_correct.mat';
       title('Plasma Glucose: Patient 3 Parameters');
end

save(savefile,'Parameters', 'gluc', 'time')  %store glucose response

end

%plot results
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clear all

hold on
load Patient1_3meals_Correct
plot(time, gluc,'r')
hold on
xlabel('Time (min)')
ylabel('Gluc (mg/dL)')
clear time gluc
load Patient2_3meals_Correct
plot(time,gluc,'g')
clear time gluc
load Patient3_3meals_Correct
plot(time,gluc, 'b')
legend('Patient 1', 'Patient 2', 'Patient 3');

Error using Randomized_Data_Corrected (line 7)
Unable to load block diagram 'Cobelli_correct'

Published with MATLAB® R2014a
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% Enclosure 5 Part 1- Parameter sensitivity testing code

% changes each parameter one a time, runs cobelli model,
% and calculates root mean squared error in the glucose output
% (a similar code computes and saves the error based on insulin data)

run Parameter_vector; % creates normal parameter vector and defines each specific value
run Parameter_initialization; %picks off values and creates variables
sim Cobelli2 %runs Cobelli Simulink model
savefile = 'init_var.mat';
save(savefile, 'gluc', 'time')  %store original glucose response
init_gluc = gluc;

%change each parameter one at a time

changes = [0.1, 0.2, 0.3, 0.4 ,0.5, 0.6, 0.7, 0.8, 0.9, 1]; %change by 10% increment changes
results = zeros(length(ins), ((length(changes)*length(Parameters))+1)); %create space to store glucose readings from each loop
results(:,1) = time;
New_Param = zeros(length(Parameters),length(changes));
Sens = zeros((length(Parameters)-2),length(changes));
for i = 1:(length(Parameters)-2)
    for j = 1:length(changes)
        try
        New_Param(i,j) = (1+changes(j))*Parameters(i); %modify one parameter at a time
        %creates a matrix where each row represents a different parameter
        %and the columns show the changes made
        run Parameter_vector; %reset parameter vector from previous changes
        Parameters(i) = New_Param(i,j); %reset parameter vector with new value
        run Parameter_initialization; %initialize parameters again
        sim Cobelli2 %run Cobelli model with new parameters
        results(:, ((i-1)*10+j+1)) = ins; %create matrix of glucose results: 1st column is time, collumns 2-11 are the changes for parameter 1, 12-21 are parameter 2, etc
        gluc_error = 100*sqrt(sum((gluc-init_gluc).^2)/length(gluc))/(max(gluc)-min(gluc));%compute glucose root mean squared error, comparing to original
        Sens(i,j) = gluc_error/changes(j); %similar to New_Param - shows sensitivity for row (parameter), and column (change)
        i
        catch
            disp('Oh No! An error occured - execution will continue') % use a 2 when an error occurs
            Sens(i,j) = 2;
        end
    end
end

savefile = 'Results.mat';
save(savefile, 'results', 'Sens')  %save glucose results in matlab file

Error using run (line 55)
Parameter_vector not found.

Error in Encl_4_Parameter_Sensitivity (line 7)
run Parameter_vector; % creates normal parameter vector and defines each specific value
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%Enclosure 5 Part 2: Analyzing Sensitivity Results
%combines parameter sensitivity based on both insulin and glucose output data

%load results from parameter sensitivity code
load('C:\Users\m151656\Documents\MATLAB\Sens_ins_full.mat')
I = Sens;
load('C:\Users\m151656\Documents\MATLAB\Sens_gluc_full.mat')
G = Sens;

% find the average sensitivity for each insulin and glucose
maximum_I = zeros(35, 2);
avg_I = zeros(35,2);
for i = 1:35
    maximum_I(i,1) = i;
    avg_I(i,1) = i;
    maximum_I(i,2) = max(I(i,:));
    avg_I(i,2) = mean(I(i,:));
end

maximum_G = zeros(35, 2);
avg_G = zeros(35,2);
for i = 1:35
    maximum_G(i,1) = i;
    avg_G(i,1) = i;
    maximum_G(i,2) = max(G(i,:));
    avg_G(i,2) = mean(G(i,:));
end

%sort results
maximum_I(:, 3:4) = sortrows(maximum_I,-2); %columns 3 and 4 will show sorted values
avg_I(:, 3:4) = sortrows(avg_I,-2); %columns 3 and 4 will show sorted values
maximum_G(:, 3:4) = sortrows(maximum_G,-2); %columns 3 and 4 will show sorted values
avg_G(:, 3:4) = sortrows(avg_G,-2); %columns 3 and 4 will show sorted values

%combine insulin and glucose sensitivity
Comb_max = zeros(35,2);
Comb_avg = zeros(35,2);
for i = 1:35
    Comb_max(i,1) = i;
    Comb_avg(i,1) = i;
    Comb_max(i,2) = sqrt((maximum_G(i,2))^2+(maximum_I(i,2))^2);
    Comb_avg(i,2) = sqrt((avg_G(i,2))^2+(avg_I(i,2))^2);
end

%sort results
Comb_max(:, 3:4) = sortrows(Comb_max,-2); %columns 3 and 4 will show sorted values
Comb_avg(:, 3:4) = sortrows(Comb_avg,-2); %columns 3 and 4 will show sorted values

%save in excel and label columns
savefile = 'Sensitivity_Results_Gluc_Ins';
col_header = {'Parameter Number', 'Max Sensitivity','Parameter Number', 'Max Sensitivity'};
row_header(1:35,1)  = {'Vg', 'k1', 'k2', 'ke1', 'ke2', 'VI', 'm1', 'm2', 'm4', 'm5', 'm6', 'HEb', 'kmax', 'kmin', 'kabs', 'kgri', 'f', 'a', 'b', 'c', 'd', 'kp1', 'kp2', 'kp3', 'kp4', 'ki', 'Fcns', 'Vm0', 'Vmx', 'Km0', 'p2U', 'K', 'alpha', 'Beta', 'gamma'};
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xlswrite(savefile, Comb_max, 1, 'B2');
xlswrite(savefile, col_header, 1, 'B1');
xlswrite(savefile, row_header, 1, 'A2');

col_header = {'Parameter Number', 'Avg Sensitivity','Parameter Number', 'Avg Sensitivity'};
xlswrite(savefile, Comb_avg, 2, 'B2');
xlswrite(savefile, col_header, 2, 'B1');
xlswrite(savefile, row_header, 2, 'A2');

Error using load
Unable to read file 'C:\Users\m151656\Documents\MATLAB\Sens_ins_full.mat': no such file or directory.

Error in Encl_4_Sensitivity_Analysis (line 5)
load('C:\Users\m151656\Documents\MATLAB\Sens_ins_full.mat')

Published with MATLAB® R2014a
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%Enclosure 6 Part 1: Parameter Adaptation Main File 

  

% This is the top-level script.  It calls the optimization 

function fmincon and makes all variable declarations necessary 

for this call.  Those variable declarations include: 1) The 

function handle for the "management" function (the function to 

be called), 2) The upper and lower bounds for each parameter 

being fit, 3) Initial condition vector for the parameters.  

These elements must be placed in the appropriate "spot" in 

% the fmincon function call.  (Type "help fmincon" in Command 

Window to see full documentation and order of arguments.  Square 

braces [] are used to give no input to a specific function 

argument.  Order matters, and  fmincon assigns inputs to each 

argument in the order received, so use [] to skip specific 

arguments and enter later ones.)    

  

% Function handle for function to be called 

f = @(p)Dilks_model_sim_10(p);   

  

% Lower and upper bounds of parameters (10 parameters to be 

fitted:  Vg, 

%  k1, VI,m4, m5, m6, kabs, kgri, kp1, kp4) (1, 2, 6, 9, 10, 11, 

15, 16, 22, 25)  

LB = [1.451 0.0397 0.039 0.2615 0.05038 0.79533 0.0196 0.04557 

3.051 0.07692]; 

UB = [1.529 0.0443 0.041 0.2765 0.05482 0.82827 0.0264 0.04743 

3.129 0.08028]; 

  

% Best initial guess  

p0 = [1.49 0.042 0.04 0.269 0.0526 0.8118 0.023 0.0465 3.09 

0.0786];  

  

% Calling the optimization function 

[P cost] = fmincon(f,p0,[],[],[],[],LB,UB) 

  

save Parameter_Adaptation_Results_new P cost 
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% Enclosure 6 Part 2: Management Function (adapts parameters) 

  

% This is the "management" function.  It handles passing the 

candidate 

% parameter vector to the model and computing the cost based on 

the 

% returned model simulation.   

% 

 

function F = Dilks_model_sim_10(p)  

  

run Diab_Parameter_Vector %load original Diabetic Cobelli 

parameter values 

index = [1, 2, 6, 9, 10, 11, 15, 16, 22, 25]; %specific 

parameters to be updated 

for i = 1:length(index) 

Parameters(index(i)) = p(i); %update only the parameters we're 

interested in 

end 

run Param_Adap_Setup %assigns new parameter values and creates 

new Initial conditions 

%uses patient data to create time vector for data points 

Parameters(38) = Ib; 

Parameters(39) = Sb; 

Parameters(40) = h; 

Parameters(41) = meal; 

% Printing the parameter vector chosen by fmincon each 

interation 

p 

  

% Solving the differential equation (running the model) 

[time, Cstates] = 

ode45(@Cobelli,T_data,InitCond',[],Parameters); 

gluc = Cstates(:,9)/Vg; 

  

  

% Calculate the cost of this parameter vector, p, by comparing 

simulation  

% to data at the same time points.  Print this value each 

iteration.   

F = sum((gluc-data).^2); 
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%Enclosure 6 Part 3: Setup file for Parameter Adaptation  

%Sets up parameter variables, initial conditions, and data time 

vector 

  

%Pick off Parameters for use in Simulink Model 

Tstep = 0.01; 

%   Glucose Kinetics 

Vg = Parameters(1); 

k1 = Parameters(2); 

k2 = Parameters(3); 

%   Renal Excretion 

ke1 = Parameters(4); 

ke2 = Parameters(5); 

%   Insulin Kinetics 

Vi = Parameters(6); %note: Vi in Weisberg 

m1 = Parameters(7); 

m2 = Parameters(8); 

m4 = Parameters(9); 

m5 = Parameters(10); 

m6 = Parameters(11); 

HEb = Parameters(12); % where is this used? 

%   Rate of Appearance - Gastro Intestinal Tract 

kmax = Parameters(13); 

kmin = Parameters(14); 

kabs = Parameters(15); 

kgri = Parameters(16); 

f = Parameters(17); 

a = Parameters(18); 

b = Parameters(19); 

c = Parameters(20); 

d = Parameters(21); 

%   Endogenous Production - Liver 

kp1 = Parameters(22); 

kp2 = Parameters(23); 

kp3 = Parameters(24); 

kp4 = Parameters(25); 

ki = Parameters(26); 

%   Utilization - muscle and adipose tissue 

Fcns = Parameters(27); 

Vm0 = Parameters(28); 

Vmx = Parameters(29); 

Km0 = Parameters(30); 

p2U = Parameters(31); 

%   Secretion 

K = Parameters(32); 

alpha = Parameters(33); 

Beta = Parameters(34); %note: different than weisberg 
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gamma = Parameters(35); %note: different than weisberg 

%h = Parameters(36); 

%   Insensitive Parameters 

%BW = Parameters(37); 

%D = Parameters(38); 

  

% Prof O'Brien change 18 Nov 

BW = Parameters(36); 

D = Parameters(37); 

  

  

%Basal Parameters for Cobelli Model: (initial conditions) 

    %  Insulin 

Sb = (m6 - HEb)/m5; 

m3b = (HEb*m1)/(1-HEb); 

matrix = [m1+m3b, -m2; -m1, m2+m4]; 

i_matrix = matrix^-1*[Sb; 0]; 

Ilb = i_matrix(1); 

Ipb = i_matrix(2);  

Ib = Ipb/Vi; 

Ipob = Sb/gamma; 

  

 %  Glucose 

 Ipob = Sb/gamma; 

 syms Gtb Gpb EGPb %recognizes unknown variables as symbols 

 %assuming Gpb > Ke2 

 S1 = 'kp1 == EGPb + kp2*Gpb+kp3*Ib+kp4*Ipob'; %Equation 12  

 S2 = 'EGPb == Fcns + (Vm0*Gtb)/(Km0+Gtb) + ke1*(Gpb - ke2)'; 

%Equation 14, 15, 27 

 S3 = '(Vm0*Gtb)/(Km0+Gtb) = k1*Gpb - k2*Gtb'; %Equation 1 

 S_Gluc = solve(S1, S2, S3, Gtb, Gpb, EGPb); %returns a 

structure with solved equations 

 tmp = double(subs(S_Gluc.Gtb)); %substitute in known parameters 

 Gtb = tmp(2); % pick out positive solution 

 tmp =  double(subs(S_Gluc.Gpb)); 

 Gpb = tmp(2); 

 tmp = double(subs(S_Gluc.EGPb)); 

 EGPb = tmp(2); 

  

 if (Gpb<=ke2) %checks if Gpb < ke2 - if so, need to change 

equations 

     clear Gtb Gpb EGPb; 

     syms Gtb Gpb EGPb; 

     S1 = 'kp1 == EGPb + kp2*Gpb+kp3*Ib+kp4*Ipob'; %Equation 12 

     S2 = 'EGPb == Fcns + (Vm0*Gtb)/(Km0+Gtb)'; %Equation 14, 

15, 27 

     S3 = '(Vm0*Gtb)/(Km0+Gtb) = k1*Gpb - k2*Gtb'; %Equation 1 
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     S_Gluc = solve(S1, S2, S3, Gtb, Gpb, EGPb); %returns a 

structure with solved equations 

     tmp = double(subs(S_Gluc.Gtb)); %substitute in known 

parameters 

     Gtb = tmp(2); % pick out positive solution 

     tmp =  double(subs(S_Gluc.Gpb)); 

     Gpb = tmp(2); 

     tmp = double(subs(S_Gluc.EGPb)); 

     EGPb = tmp(2); 

 end 

  

 % Prof O'Brien edit 18 Nov 

 Gb = Gpb/Vg; 

 h = Gb; 

  

 % meal at t=1 

 meal = 1; 

  

InitCond = zeros(12,1); %initial values for all states 

InitCond(1) = D; %Qsto1  

InitCond(2) = 0; %Qsto2 

InitCond(3) = 0; %Qgut 

InitCond(4) = Ib; %I1 

InitCond(5) = Ib; %Id 

InitCond(6) = Ipb; %Ip 

InitCond(7) = Ipob; %Ipo - find this! 

InitCond(8) = 0;%X 

InitCond(9) = Gpb; %Gp 

InitCond(10) = Gtb; %Gt 

InitCond(11) = 0; %Y 

InitCond(12) = Ilb; %Il 

  

load Patient1_correct_data % load random patient data 

%record what the original patient parameters were for 

verification 

%original parameters: 1.4636, 0.0408, 0.0394, 3.0783, 0.0798 

% pick off specific time points from the data - glucose readings 

every 20 

% min (15 readings total) 

T_data = zeros(16,1); 

data = zeros(16,1); 

T_data(1) = pat_time(1); 

data(1) = pat_gluc(1); 

for i = 1:15 

    T_data(i+1) = pat_time(i*20*1000); 

    data(i+1) = pat_gluc(i*20*1000); 

end 
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%Enclosure 6 Part 4: Cobelli Model Equations 

%runs the cobelli model using an ODE solver 

  

  

%inputs: 

%t=current time 

%state=current state of tracked variables 

%Parameters=parameter vector 

%inputs = 2 row vector of insulin and glucagon injection amounts 

  

  

  

function stateReturn = Cobelli(t, state, Parameters) 

  

  

%% plucks off parameters, assigns variable names, creates 

initial conditions 

%Pick off Parameters for use in Cobelli model 

  

%   Glucose Kinetics 

Vg = Parameters(1); 

k1 = Parameters(2); 

k2 = Parameters(3); 

%   Renal Excretion 

ke1 = Parameters(4); 

ke2 = Parameters(5); 

%   Insulin Kinetics 

Vi = Parameters(6);  

m1 = Parameters(7); 

m2 = Parameters(8); 

m4 = Parameters(9); 

m5 = Parameters(10); 

m6 = Parameters(11); 

HEb = Parameters(12);  

%   Rate of Appearance - Gastro Intestinal Tract 

kmax = Parameters(13); 

kmin = Parameters(14); 

kabs = Parameters(15); 

kgri = Parameters(16); 

f = Parameters(17); 

a = Parameters(18); 

b = Parameters(19); 

c = Parameters(20); 

d = Parameters(21); 

%   Endogenous Production - Liver 

kp1 = Parameters(22); 

kp2 = Parameters(23); 
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kp3 = Parameters(24); 

kp4 = Parameters(25); 

ki = Parameters(26); 

%   Utilization - muscle and adipose tissue 

Fcns = Parameters(27); 

Vm0 = Parameters(28); 

Vmx = Parameters(29); 

Km0 = Parameters(30); 

p2u = Parameters(31); 

%   Secretion 

K = Parameters(32); 

alpha = Parameters(33); 

Beta = Parameters(34);  

gamma = Parameters(35);  

  

% Prof O'Brien change 18 Nov 

BW = Parameters(36); 

D = Parameters(37); 

Ib = Parameters(38);  

Sb = Parameters(39); 

h = Parameters(40); 

meal = Parameters(41); 

  

 %% State Vector  

%Rate of Appearance 

Qsto1 = state(1); %where meal input is implemented as initial 

condition 

Qsto2 = state(2); 

Qgut = state(3); 

I1 = state(4); 

Id = state(5); %delayed insulin signal 

Ip = state(6);%plasma insulin concentration 

Ipo = state(7); 

X = state(8); %interstitial insulin (muscle and adipose) 

Gp = state(9); 

Gt = state(10); 

Y = state(11); 

Il = state(12); 

  

  

 %% Model Equations %does the order of these equations matter? 

  %Rate of Appearance 

Qsto=Qsto1+Qsto2; 

KemptQsto=kmin+(kmax-kmin)/2*(tanh(a*(Qsto-b*D))-tanh(c*(Qsto-

d*D))+2);  

dQsto1=-kgri*Qsto1; 

dQsto2=-KemptQsto*Qsto2+kgri*Qsto1; 
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dQgut=-kabs*Qgut+KemptQsto*Qsto2;  

Ra=f*kabs*Qgut/BW; 

  

%Liver 

I=Ip/Vi;  

dI1=-ki*(I1-I);    

dId=-ki*(Id-I1); 

EGP=kp1-kp2*Gp-kp3*Id-kp4*Ipo;  

  

%Muscle and Adipose Tissue 

dX=-p2u*X+p2u*(I-Ib); 

VmX=Vm0+Vmx*X; 

Uid=VmX*Gt/(Km0+Gt); 

Uii=Fcns; 

  

%Glucose Kinetics 

if (Gp>ke2) 

    E=ke1*(Gp-ke2); 

else 

    E=0; 

end 

dGp=EGP+Ra-Uii-E-k1*Gp+k2*Gt; 

dGt=-Uid+k1*Gp-k2*Gt; 

G=Gp/Vg; 

dG=dGp/Vg; 

  

%Pancreas 

    %static secretion 

if(Beta*(G-h)>=-Sb)       

    dY=-alpha*(Y-Beta*(G-h)); 

else 

    dY=-alpha*Y-a*Sb; 

end     

  

    %dynamic secretion 

if(dG>0) 

    Spo=Y+K*dG+Sb;      

else 

    Spo=Y+Sb; 

end 

  

dIpo=-gamma*Ipo+Spo; 

S=gamma*Ipo;  

  

%Insulin Dynapics 

HE=-m5*S+m6;  

m3=HE*m1/(1-HE); 
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dIl=-(m1+m3)*Il+m2*Ip+S; 

dIp=-(m2+m4)*Ip+m1*Il; 

  

  

%% return 

stateReturn=[dQsto1;dQsto2;dQgut;dI1;dId;dIp;dIpo;dX;dGp;dGt;dY;

dIl]; 

end 

   %this function returns state derivatives and uses them and 

the current 

   %state to determine the next state 
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